

Challenges for operational mitigation of contrails Meteorological information needs

Steven L. Baughcum Timothy F. Rahmes September 7, 2022 (Steven.L.Baughcum@boeing.com)

Approach

Persistent contrails – interaction of aircraft emissions with weather

Contrail formation (Schmidt-Appleman criteria)

- Ambient temperature/pressure/humidity
- Propulsion Efficiency
- Fuel heat of combustion, EI(H2O)

Contrail Persistence

•RHi > 100%

Contrail Impact

- Evolving weather system (temperature, humidity, winds)
- Contrail microphysics (number of ice particles formed initially)

Context for mitigating contrail impact

What are the options?

- Reduce the number of ice particles
 - Modified combustion: Advanced combustors can produce less soot
 - Change fuel composition: Lower aromatics produce less soot (activated soot act as ice nuclei)
 - Drastic engine/airframe changes: hydrogen fuel, fuel cells, capture exhaust water, etc.
- Avoid cold ice-supersaturated layers (ISSL): If we avoid regions with RHI>100% that meet the Schmidt-Appleman criteria, we won't create persistent contrails.
 - Can we identify the persistent contrails with the greatest impact robustly?
 - In research mode?
 - In operational forecasts?
- Account for those ISSL that would have evolved into natural cirrus

Better Weather Forecasting at Altitude

- •Any model analyzing aircraft-induced cloudiness requires *reliable weather forecasting at altitude:*
 - Reliable temperatures and relative humidity predictions
 - Reliable predictions of ice supersaturated conditions
- •In-situ measurements at cruise altitudes (currently available data are limited)
 - Research aircraft field missions (NASA, NOAA, NCAR, DLR, FAAM, etc.)
 - MOZAIC/IAGOS (a few airplanes on a few routes over 25 years)
 - Radiosonde vertical profiles
- Further measurements are required to test, evaluate, and improve such predictions -> Ultimately to assimilate into forecast models

What do Radiosondes Tell us

- Temperature and time lag response corrections necessary for radiosonde data but provide detailed data on vertical humidity distribution
- Mannstein, Spichtinger and Gierens analyzed European radiosonde data, applied instrument corrections and showed that ice supersaturated regions were generally less than 1 km thick vertically. Similar results on US data (below).
- 80% of the time, the radiosonde data indicate that there will only be one contrail ice supersaturation layer (CISSL)(ISSL in which a contrail forms and persists)

Contrail Ice Supersaturation Layer Thickness (derived from US radiosonde data, 5 year period)

MOZAIC/IAGOS In-service Humidity Observations

- •Valuable source of humidity measurements at cruise altitudes from commercial airplanes in service
- Extensive calibration protocol over 27 years
- Limited number of airplanes (5 for MOZAIC, approximately 10 for IAGOS)
- Limited routes
- Best available data to date

Gierens and co-workers have analyzed IAGOS data and compared with model predictions

- Contrail formation in the ECMWF forecasts are predicted well suggesting that temperatures are predicted well
- Relative humidity and hence persistent contrail formation is not adequately predicted when compared to the IAGOS observations

We need to consider the persistent contrails which have the highest impact

We know in situ temperatures fairly well (use T to characterize ice supersaturation)

Water vapor sensor which can measure down to 20 ppmv would capture most ice supersaturation conditions where commercial airplanes fly

Water vapor spans over 4 orders magnitude in concentration (ppmv)

How is the WVSS-2 performing in upper troposphere? (improvement needed!)

Schmidt Appleman W/Mixing lines (200 mbar) | W

Global Model Treatment of Water Vapor needs improvement (e.g., US GFS,UKMO,ECMWF)

Likely issues:

- Vertical levels every 50 mb insufficient
- Horizontal at 0.25 degree insufficient
- Microphysics insufficient to capture near cloud supersaturation structure
- Subgrid processes important
- Dry bias

Conclusions

- Measuring UT water vapor is difficult, but we don't need stratospheric quality
- We've made some progress in bounding the range of water vapor concentration measurements needed

- A commercial water vapor sensor does not exist that meets our needs
- Current models are insufficient in identifying ISSLs or the RHI levels as well as we would want to robustly identify and avoid the most persistent contrails
- Industry/airline participation is required to make measurements in commercial service to confidently mitigate persistent contrail impacts

Next Steps

- The government research labs and industry need to research and prototype sensors
 - Ongoing discussions within measurement community
- Explore development of prototype humidity sensor accurate in range 20 ppmv to 10000+ ppmv
 - Provide better measurements (T, RHi) at cruise altitudes for contrail mitigation
 - Provide better measurements at lower altitudes for weather forecasting
- With such data available for model evaluation and assimilation into forecasts, improve forecast models for more robust calculations
- Need to improve handling of clouds, aerosols, specific aircraft, etc. in model calculations of contrail impact